login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: sin(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), odd powers only.
5

%I #17 Sep 11 2022 09:28:30

%S 1,1,-11,-491,-11159,460681,103577629,8160790429,-624333860399,

%T -386787409545839,-68810049201689531,6999828208693648549,

%U 9872674440874152431161,3255253386897615662908441,-346248578699462435167833491,-1072454627614122049417452882131,-584579592415141205182370782224479,47874474639430619859527348515679521

%N Expansion of e.g.f.: sin(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), odd powers only.

%H G. C. Greubel, <a href="/A263246/b263246.txt">Table of n, a(n) for n = 1..234</a>

%F a(n) = - A101922(n). - _Michel Marcus_, Sep 11 2022

%e E.g.f.: S(x) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! + 103577629*x^13/13! + 8160790429*x^15/15! +...

%e Related expansions.

%e S(x)^2 = 2*x^2/2! + 8*x^4/4! - 112*x^6/6! - 9088*x^8/8! - 310528*x^10/10! + 14701568*x^12/12! +...+ -A263249(n)*x^(2*n)/(2*n)! +...

%e sqrt(1 - S(x)^2) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! +...+ A263247(n)*x^(2*n)/(2*n)! +...

%e sqrt(1 + S(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(2*n)*x^(2*n)/(2*n)! +...

%t r:= Sqrt[2]; With[{nmax = 500}, CoefficientList[Series[Sin[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax - 1]!][[2 ;; -1 ;; 2]] (* _G. C. Greubel_, Jul 27 2018 *)

%o (PARI) {a(n) = local(S=x,C=1,D=1,ox=O(x^(2*n+2))); for(i=1,2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D);); (2*n+1)!*polcoeff(S, 2*n+1)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A263247, A263248, A263249.

%Y Cf. A101922.

%K sign

%O 1,3

%A _Paul D. Hanna_, Oct 13 2015