login
A370463
E.g.f. satisfies A(x) = log(1 + x)/(1 - A(x))^3.
3
0, 1, 5, 74, 1704, 54474, 2225394, 110786976, 6506273544, 440368208280, 33752787590136, 2889747086330400, 273333159994125984, 28307010099549881088, 3185660442523728449664, 387117483236717961052800, 50518567433159392237036416, 7046383438320021239186859264
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (4*k-2)!/(3*k-1)! * Stirling1(n,k).
E.g.f.: Series_Reversion( exp(x * (1 - x)^3) - 1 ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (4*k-2)!/(3*k-1)!*stirling(n, k, 1));
CROSSREFS
Sequence in context: A322446 A065894 A233013 * A126740 A251666 A192564
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved