login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of making change for n cents using coins of 1, 2, 4, 10, 20, 40, 100 cents.
3

%I #35 Feb 01 2022 01:28:47

%S 1,1,2,2,4,4,6,6,9,9,13,13,18,18,24,24,31,31,39,39,50,50,62,62,77,77,

%T 93,93,112,112,134,134,159,159,187,187,218,218,252,252,293,293,337,

%U 337,388,388,442,442,503,503,571,571,646,646,728,728,817,817,913

%N Number of ways of making change for n cents using coins of 1, 2, 4, 10, 20, 40, 100 cents.

%C Number of partitions of n into parts 1, 2, 4, 10, 20, 40, and 100. - _Joerg Arndt_, Sep 05 2014

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.

%D G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

%H T. D. Noe, <a href="/A001310/b001310.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=180">Encyclopedia of Combinatorial Structures 180</a>

%H <a href="/index/Rec#order_177">Index entries for linear recurrences with constant coefficients</a>, order 177.

%H <a href="/index/Mag#change">Index entries for sequences related to making change.</a>

%F G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)*(1-x^20)*(1-x^40)*(1-x^100)).

%e 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 9*x^8 + 9*x^9 + 13*x^10 + ...

%t a[n_] := SeriesCoefficient[1/((1 - x)(1 - x^2)(1 - x^4)(1 - x^10)(1 - x^40)(1 - x^100)), {x, 0, n}]

%t Table[Length[FrobeniusSolve[{1,2,4,10,20,40,100},n]],{n,0,60}] (* _Harvey P. Dale_, Nov 13 2013 *)

%K nonn

%O 0,3

%A _N. J. A. Sloane_