login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123742
Certain Vandermonde determinants with Fibonacci numbers.
3
1, -1, -2, 48, 30240, -1596672000, -18172937502720000, 122457316443772566896640000, 1284319496829094129116119090331648000000, -55603466527142141932748234118927499493985767915520000000
OFFSET
1,3
COMMENTS
The determinant of a Vandermonde matrix V_n with elements V_n[i,j]=(x_i)^(n-j), i,j,=1..n, is VdmI([x_1,...,x_n]) := Det(V_n)=product(x_i - x_j, 1<=i<j<=n) if n>=2. For n=1, Det(V_1)=1. The number of factors for n>=2 is n*(n-1)/2 = A000217(n-1) (triangular numbers).
The signs are +1 for n=1 and (-1)^t(n) with the triangular numbers t(n):=A000217(n-1) for n>=2. Periodic pattern --++, from n=2 on.
The recurrence below follows from the fact that ((-1)^(n-1))*A123741(n-1), n>=2, is the product of the factors of Det(V_n)/Det(V_(n-1)) in the Fibonacci case.
See A203311 for the unsigned version. [From Clark Kimberling, Jan 03 2012]
FORMULA
a(n)=VdmI([F(2),F(3),...,F(n+1)]) := Det(V_n[i,j]) with the Vandermonde matrixelements V_n[i,j]:=F(i+1)^(n-j), i,j,=1..n and F(k):=A000045(k) (Fibonacci).
Recurrence: a(n)= ((-1)^(n-1))* A123740(n-1)*a(n-1), a(2):=-1. a(1):=+1.
EXAMPLE
n=4: V_4=matrix([1,1,1,1],[8,4,2,1],[27,9,3,1],[125,25,5,1]), a(4)=Det(V_4)=+48.
n=4: +48 = a(4) = A123740(3)*a(3) = 24*2.
MATHEMATICA
(See A203311.)
CROSSREFS
Cf. A203311.
Sequence in context: A368132 A090770 A081960 * A203311 A343694 A295177
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Oct 13 2006
STATUS
approved