login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177322
Number of permutations of n copies of 1..4 with all adjacent differences <= 2 in absolute value.
2
12, 660, 51240, 4635540, 457507512, 47768769048, 5188083048720, 580132098966420, 66341857216154520, 7722843117550721160, 912113857017595941072, 109025503164832356811800
OFFSET
1,1
LINKS
FORMULA
From Peter Bala, Nov 05 2024: (Start)
The following are conjectural:
For n >= 1, a(n) = Sum_{k = 0..2*n} (-1)^(n+k) * (k/n)^2 * binomial(2*n, k)^4. Cf. the identity Sum_{k = 0..2*n} (-1)^(n+k) * (k/n) * binomial(2*n, k)^2 = binomial(2*n, n) = A000984(n) for n >= 1.
For n >= 1, a(n) = 2 * binomial(2*n, n) * Sum_{k = 0..n} (k/n) * binomial(2*n, n-k)^2 * binomial(2*n+k, k).
P-recursive: n^3*(2*n-1)*(n-1)*(24*n^3-105*n^2+152*n-73)*a(n) = 2*(n-1)*(3264*n^7-20808*n^6+53900*n^5-73159*n^4+55963*n^3-24107*n^2+5436*n-504)*a(n-1) - 4*(2*n-1)*(24*n^3-33*n^2+14*n-2)*(2*n-3)^2*(n-2)^2*a(n-2) with a(1) = 12 and a(2) = 660.
The supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 06 2010
STATUS
approved