login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262383
Denominators of a semi-convergent series leading to the first Stieltjes constant gamma_1.
8
12, 720, 15120, 11200, 332640, 908107200, 4324320, 2940537600, 175991175360, 512143632000, 1427794368, 7795757249280, 107084577600, 279490747536000, 200143324310529600, 1178332991611776000, 157531148611200, 906996615309386784000, 5828652498614400, 262872227687509440000
OFFSET
1,1
COMMENTS
gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.
LINKS
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018
EXAMPLE
Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
MAPLE
a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
MATHEMATICA
a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
PROG
(PARI) a(n) = denominator(-bernfrac(2*n)*sum(k=1, 2*n-1, 1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015
CROSSREFS
Sequence in context: A171105 A215686 A277691 * A002196 A141421 A000909
KEYWORD
nonn,frac
AUTHOR
STATUS
approved