OFFSET
1,1
COMMENTS
gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..500
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018
EXAMPLE
Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
MAPLE
a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
MATHEMATICA
a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
PROG
(PARI) a(n) = denominator(-bernfrac(2*n)*sum(k=1, 2*n-1, 1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Iaroslav V. Blagouchine, Sep 20 2015
STATUS
approved