login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262385
Denominators of a semi-convergent series leading to the second Stieltjes constant gamma_2.
6
1, 60, 336, 21600, 133056, 825552000, 89100, 11435424000, 483113030400, 101889627840000, 1471926193920, 42280119968486400, 3425059028160, 209827678712652000, 1184296360402995840, 163066081742403840000, 1749151741873536000, 20373357051590182072392960000
OFFSET
1,2
COMMENTS
gamma_2 = - 1/60 + 5/336 - 469/21600 + 6515/133056 - 131672123/825552000 + ..., see formulas (46)-(47) in the reference below.
LINKS
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
a(n) = denominator(B_{2n}*(H^2_{2n-1}-H^(2)_{2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
a(n) = denominator(-Zeta(1 - 2*n)*(Psi(1,2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)), where gamma is Euler's gamma and Psi is the digamma function. - Peter Luschny, Apr 19 2018
EXAMPLE
Denominators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
MAPLE
a := n -> denom(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0, 2*n) + gamma)^2 - (Pi^2)/6)):
seq(a(n), n=1..18); # Peter Luschny, Apr 19 2018
MATHEMATICA
a[n_] := Denominator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
PROG
(PARI) a(n) = denominator(bernfrac(2*n)*(sum(k=1, 2*n-1, 1/k)^2 - sum(k=1, 2*n-1, 1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved