Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 29 2018 00:07:22
%S 12,720,15120,11200,332640,908107200,4324320,2940537600,175991175360,
%T 512143632000,1427794368,7795757249280,107084577600,279490747536000,
%U 200143324310529600,1178332991611776000,157531148611200,906996615309386784000,5828652498614400,262872227687509440000
%N Denominators of a semi-convergent series leading to the first Stieltjes constant gamma_1.
%C gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.
%H G. C. Greubel, <a href="/A262383/b262383.txt">Table of n, a(n) for n = 1..500</a>
%H Iaroslav V. Blagouchine, <a href="http://dx.doi.org/10.1016/j.jnt.2015.06.012">Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only.</a> Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. <a href="http://arxiv.org/abs/1501.00740">arXiv version</a>, arXiv:1501.00740 [math.NT], 2015.
%F a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
%F a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - _Peter Luschny_, Apr 19 2018
%e Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
%p a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
%p seq(a(n), n=1..20); # _Peter Luschny_, Apr 19 2018
%t a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
%o (PARI) a(n) = denominator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ _Michel Marcus_, Sep 23 2015
%Y Cf. A001620, A002206, A195189, A075266, A262235, A001067, A006953, A082633, A262382 (numerators of this series), A086279, A086280, A262387.
%K nonn,frac
%O 1,1
%A _Iaroslav V. Blagouchine_, Sep 20 2015