Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 19 2021 05:51:03
%S 0,0,0,378,90027,2931831,33720354,224710119,1068797961,4037126346,
%T 12886585236,36161763120,91629683271,213681907449,465104644470,
%U 955060713621,1865654931141,3490074060228,6286011239592,10948910130774,18510503248611,30469179410667
%N a(n) is the Severi degree for curves of degree n and cogenus 5.
%C All terms are divisible by 9: (a(n)) = 9*(42, 10003, 325759, 3746706, 24967791, ...). Satisfies a linear recurrence with characteristic polynomial (x-1)^11. - _M. F. Hasler_, Oct 30 2019
%H Colin Barker, <a href="/A328552/b328552.txt">Table of n, a(n) for n = 1..1000</a>
%H Florian Block, <a href="https://arxiv.org/abs/1006.0218">Computing node polynomials for plane curves</a>, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
%H Sergey Fomin and Grigory Mikhalkin, <a href="https://doi.org/10.4171/JEMS/238">Labeled floor diagrams for plane curves</a>, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:<a href="https://arxiv.org/abs/0906.3828">0906.3828</a> [math.AG], 2009-2010.
%H Israel Vainsencher, <a href="https://arxiv.org/abs/alg-geom/9312012">Enumeration of n-fold tangent hyperplanes to a surface</a>, arXiv preprint alg-geom/9312012, 1993-1994; J. Algebraic Geom., 4 (1995), 503-526. See Section 5.1.2.
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F a(n) = (81/40)*n^10 - (81/4)*n^9 - (27/8)*n^8 + (2349/4)*n^7 - (1044)*n^6 - (127071/20)*n^5 + (128859/8)*n^4 + (59097/2)*n^3 - (3528381/40)*n^2 - (946929/20)*n + 153513 for n > 3.
%F G.f.: 9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10)/(1 - x)^11. - _M. F. Hasler_, Oct 30 2019
%F a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>9. - _Colin Barker_, Oct 30 2019
%o (PARI) {A328552(n,c=[9961, 305795, 2799396, 11895551, 28175817, 40446774, 36208620, 19852560, 6123600, 816480], p=9)=if(n<4,0,sum(k=1,min(#c,n-=4),c[k]*p*=(n-k+1)/k,378))} \\ _M. F. Hasler_, Oct 30 2019
%o (PARI) concat([0, 0, 0], Vec(9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10) / (1 - x)^11 + O(x^40))) \\ _Colin Barker_, Oct 30 2019
%Y Cf. A171108, A171113, A328551.
%K nonn,easy
%O 1,4
%A _N. J. A. Sloane_, Oct 29 2019
%E New name and a(1)=a(2)=a(3)=0 from _Andrey Zabolotskiy_, Jan 19 2021