login
A347379
Möbius transform of A108951, the primorial inflation of n.
3
1, 1, 5, 2, 29, 5, 209, 4, 30, 29, 2309, 10, 30029, 209, 145, 8, 510509, 30, 9699689, 58, 1045, 2309, 223092869, 20, 870, 30029, 180, 418, 6469693229, 145, 200560490129, 16, 11545, 510509, 6061, 60, 7420738134809, 9699689, 150145, 116, 304250263527209, 1045, 13082761331670029, 4618, 870, 223092869, 614889782588491409
OFFSET
1,3
COMMENTS
Multiplicative because A108951 is.
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A108951(d).
a(A000040(n)) = A002110(n) - 1.
From Amiram Eldar, Sep 16 2023: (Start)
Multiplicative with a(p^e) = A034386(p)^e - A034386(p)^(e-1).
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + A002110(n)/(A002110(n)-1)^2) = 3.8730356211898760903... . (End)
MATHEMATICA
prim[p_] := Product[Prime[i], {i, 1, PrimePi[p]}]; f[p_, e_] := (pr = prim[p])^e - pr^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 16 2023 *)
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
A347379(n) = sumdiv(n, d, moebius(n/d)*A108951(d));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Sep 01 2021
STATUS
approved