login
A328556
Expansion of Product_{p prime, k>=1} (1 - x^(p^k)).
2
1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 1, 0, -1, -1, -2, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, -3, -3, -1, 1, 1, 0, -1, -1, 2, 2, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, 0, -2, -3, -1, -1, 0, 2, 0, 1, 3, 0, 1, 3, 1, -3, -2, -3, -2, 3, 2, -1, 0, -2, 1, 1, -2, -1, 1, 2, 2, 3, -1, -2, 4
OFFSET
0,17
COMMENTS
Convolution inverse of A023894.
The difference between the number of partitions of n into an even number of distinct prime power parts and the number of partitions of n into an odd number of distinct prime power parts (1 excluded).
Conjecture: the last zero (38th) occurs at n = 340.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^A246655(k)).
MAPLE
N:= 100: # for a(0)..a(N)
R:= 1:
p:= 1:
do
p:= nextprime(p);
if p > N then break fi;
for k from 1 to floor(log[p](N)) do
R:= series(R*(1-x^(p^k)), x, N+1)
od;
od:
seq(coeff(R, x, j), j=0..N); # Robert Israel, Nov 03 2019
MATHEMATICA
nmax = 90; CoefficientList[Series[Product[(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 90}]
CROSSREFS
KEYWORD
sign,look
AUTHOR
Ilya Gutkovskiy, Nov 01 2019
STATUS
approved