The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328556 Expansion of Product_{p prime, k>=1} (1 - x^(p^k)). 2
 1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 1, 0, -1, -1, -2, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, -3, -3, -1, 1, 1, 0, -1, -1, 2, 2, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, 0, -2, -3, -1, -1, 0, 2, 0, 1, 3, 0, 1, 3, 1, -3, -2, -3, -2, 3, 2, -1, 0, -2, 1, 1, -2, -1, 1, 2, 2, 3, -1, -2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 COMMENTS Convolution inverse of A023894. The difference between the number of partitions of n into an even number of distinct prime power parts and the number of partitions of n into an odd number of distinct prime power parts (1 excluded). Conjecture: the last zero (38th) occurs at n = 340. LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{k>=1} (1 - x^A246655(k)). MAPLE N:= 100: # for a(0)..a(N) R:= 1: p:= 1: do   p:= nextprime(p);   if p > N then break fi;   for k from 1 to floor(log[p](N)) do     R:= series(R*(1-x^(p^k)), x, N+1)   od; od: seq(coeff(R, x, j), j=0..N); # Robert Israel, Nov 03 2019 MATHEMATICA nmax = 90; CoefficientList[Series[Product[(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 90}] CROSSREFS Cf. A023894, A046675, A054685, A246655, A292561. Sequence in context: A170967 A035227 A049340 * A321888 A321750 A056929 Adjacent sequences:  A328553 A328554 A328555 * A328557 A328558 A328559 KEYWORD sign,look AUTHOR Ilya Gutkovskiy, Nov 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 10:08 EDT 2020. Contains 334724 sequences. (Running on oeis4.)