login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of f(-x, -x^3) f(-x, x^2) in powers of x where f(, ) is Ramanujan's general theta function.
4

%I #11 Mar 12 2021 22:24:44

%S 1,-2,2,-2,1,-2,2,-2,3,0,2,-2,2,-2,0,-4,2,-2,2,0,1,-2,4,-2,0,-2,2,-2,

%T 3,-2,2,0,2,-2,0,-2,4,-2,2,0,2,-4,0,-4,0,-2,2,-2,1,0,4,-2,2,0,2,-2,2,

%U -4,2,0,3,-2,2,-2,0,0,2,-4,2,0,2,-4,2,-2,0,0,2

%N Expansion of f(-x, -x^3) f(-x, x^2) in powers of x where f(, ) is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

%H G. C. Greubel, <a href="/A129451/b129451.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(-x) * phi(x^3) / chi(x) = f(-x^2)^3 * phi(x^3) / f(x)^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

%F Expansion of q^(-1/6) * eta(q)^2 * eta(q^4)^2 * eta(q^6)^5 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^2) in powers of q.

%F Euler transform of period 12 sequence [ -2, 1, 0, -1, -2, -2, -2, -1, 0, 1, -2, -2, ...].

%F a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2 if p == 5, 11 (mod 12), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (-1)^e* (e+1) if p == 7 (mod 12).

%F a(n) = A129449(3*n).

%e G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 2*x^10 + ...

%e G.f. = q - 2*q^7 + 2*q^13 - 2*q^19 + q^25 - 2*q^31 + 2*q^37 - 2*q^43 + 3*q^49 + ...

%t a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, KroneckerSymbol[ -4, #] KroneckerSymbol[ 12, m/#] &]]]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] QPochhammer[ x^2]^3 / QPochhammer[ -x]^2, {x, 0, n}]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-1/8) EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 3, 0, x^3] QPochhammer[ x, -x], {x, 0, n}]; (* _Michael Somos_, Nov 11 2015 *)

%o (PARI) {a(n) = if( n<0, 0, n = 6*n + 1; sumdiv(n, d, kronecker( -4, d) * kronecker( 12, n/d)))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^5 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};

%Y Cf. A129449.

%K sign

%O 0,2

%A _Michael Somos_, Apr 16 2007