login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037809
Number of i such that d(i) <= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
2
0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 5, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3
OFFSET
1,7
FORMULA
From Ralf Stephan, Oct 05 2003: (Start)
G.f.: -1/(1-x) + 1/(1-x) * Sum_{k>=0} (t + t^3 + t^4)/(1 + t + t^2 + t^3), t=x^2^k).
a(n) = A056973(n) + A000120(n) - 1.
a(n) = b(n) - 1, with b(0)=0, b(2n) = b(n) + [n even], b(2n+1) = b(n) + 1. (End)
EXAMPLE
The base-2 representation of n=4 is 100 with d(0)=0, d(1)=0, d(2)=1. There is one fall-or-equal from d(0) to d(1), so a(4)=1. - R. J. Mathar, Oct 16 2015
MAPLE
A037809 := proc(n)
a := 0 ;
dgs := convert(n, base, 2);
for i from 2 to nops(dgs) do
if op(i, dgs)<=op(i-1, dgs) then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 16 2015
CROSSREFS
Cf. A033265.
Sequence in context: A046799 A348172 A319506 * A280534 A129451 A097195
KEYWORD
nonn,base
EXTENSIONS
Sign in Name corrected by R. J. Mathar, Oct 16 2015
STATUS
approved