login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120376
Primes of the form 2*5^k - 1.
2
1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
OFFSET
1,1
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
The next term has 125 digits. - Harvey P. Dale, Jan 26 2019
FORMULA
a(n) = 2*5^A120375(n) - 1 = 2*5^(2*A002958(n)) - 1. - Jianing Song, Sep 22 2018
EXAMPLE
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[2*5^Range[100]-1, PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
PROG
(PARI) for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
CROSSREFS
Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), this sequence (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.
Sequence in context: A376502 A086709 A215719 * A231805 A122272 A330650
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jun 28 2006
STATUS
approved