login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120379
Number of partitions of the Catalan number binomial(2n,n)/(n+1).
1
1, 1, 2, 7, 135, 53174, 6620830889, 39020148000237259665, 133523474368721196662101633251149823925, 14042421942608880253531745690954970851431472263832971258973477309202081861
OFFSET
0,3
EXAMPLE
a(3)=7 because binomial(6,3)/4 = 5 and the number of partitions of 5 is 7.
MAPLE
with(combinat): seq(numbpart(binomial(2*n, n)/(n+1)), n=0..8); # Emeric Deutsch, Jul 23 2006
MATHEMATICA
Array[PartitionsP@ CatalanNumber@ # &, 10, 0] (* Michael De Vlieger, Dec 17 2017 *)
PROG
(MuPAD) combinat::partitions::count(binomial(2*n, n)/(n+1)) $n=0..10 // Zerinvary Lajos, Apr 16 2007
CROSSREFS
Sequence in context: A323597 A286423 A041727 * A101799 A201172 A062617
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Jun 28 2006
EXTENSIONS
Edited by Emeric Deutsch, Jul 23 2006
STATUS
approved