login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120379 Number of partitions of the Catalan number binomial(2n,n)/(n+1). 1
1, 1, 2, 7, 135, 53174, 6620830889, 39020148000237259665, 133523474368721196662101633251149823925, 14042421942608880253531745690954970851431472263832971258973477309202081861 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..13

Henry Bottomley, Partition and composition calculator using a Java applet

G. P. Michon, Partition Function

EXAMPLE

a(3)=7 because binomial(6,3)/4 = 5 and the number of partitions of 5 is 7.

MAPLE

with(combinat): seq(numbpart(binomial(2*n, n)/(n+1)), n=0..8); # Emeric Deutsch, Jul 23 2006

MATHEMATICA

Array[PartitionsP@ CatalanNumber@ # &, 10, 0] (* Michael De Vlieger, Dec 17 2017 *)

PROG

(MuPAD) combinat::partitions::count(binomial(2*n, n)/(n+1)) $n=0..10 // Zerinvary Lajos, Apr 16 2007

CROSSREFS

Cf. A003107, A000108.

Sequence in context: A323597 A286423 A041727 * A101799 A201172 A062617

Adjacent sequences:  A120376 A120377 A120378 * A120380 A120381 A120382

KEYWORD

nonn

AUTHOR

Zerinvary Lajos, Jun 28 2006

EXTENSIONS

Edited by Emeric Deutsch, Jul 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 17:51 EDT 2021. Contains 345120 sequences. (Running on oeis4.)