login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120380
Number of partitions of n*(n+1).
1
1, 2, 11, 77, 627, 5604, 53174, 526823, 5392783, 56634173, 607163746, 6620830889, 73232243759, 819876908323, 9275102575355, 105882246722733, 1218374349844333, 14118662665280005, 164637479165761044, 1930656072350465812, 22755290216580025259, 269435605212954994471
OFFSET
0,2
FORMULA
a(n) = A000041(A002378(n)). - Michel Marcus, Sep 30 2024
EXAMPLE
a(2)=11 because the number of partitions of 6 is 11.
MAPLE
with(combinat); [seq(numbpart(n*(n+1)), n=1..20)];
with(combinat): seq(numbpart(n*(n+1)), n=0..21);
MATHEMATICA
Table[PartitionsP[n*(n+1)], {n, 0, 21}] (* James C. McMahon, Sep 30 2024 *)
PROG
(PARI) a(n)=numbpart(n^2+n) /* Michael Somos, Jul 24 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Jun 29 2006
EXTENSIONS
Edited by Michael Somos, Emeric Deutsch and N. J. A. Sloane, Jul 23 2006
STATUS
approved