login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120381 Number of partitions of Bell(n). 1
1, 1, 2, 7, 176, 281589, 5134205287973, 158606118553696417431847045996, 16514030227448471632774408193106540249556159974371768498637396492292 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Amiram Eldar, Table of n, a(n) for n = 0..11

Henry Bottomley, Partition and Composition calculator using a Java applet

G. P. Michon, Partition Function

EXAMPLE

a(3)=7 because the third Bell number is 5 and the number of partitions of 5 is 7.

MAPLE

with(combinat): a:=n->numbpart(bell(n)): seq(a(n), n=0..7);

MATHEMATICA

Table[PartitionsP[BellB[n]], {n, 0, 8}] (* Amiram Eldar, Nov 23 2019 *)

CROSSREFS

Cf. A003107, A000110.

Sequence in context: A236810 A159034 A336249 * A260507 A173240 A042359

Adjacent sequences:  A120378 A120379 A120380 * A120382 A120383 A120384

KEYWORD

nonn

AUTHOR

Zerinvary Lajos, Jun 29 2006

EXTENSIONS

Edited by Emeric Deutsch and N. J. A. Sloane, Jul 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 06:30 EDT 2021. Contains 343965 sequences. (Running on oeis4.)