The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120381 Number of partitions of Bell(n). 1
 1, 1, 2, 7, 176, 281589, 5134205287973, 158606118553696417431847045996, 16514030227448471632774408193106540249556159974371768498637396492292 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Amiram Eldar, Table of n, a(n) for n = 0..11 Henry Bottomley, Partition and Composition calculator using a Java applet G. P. Michon, Partition Function EXAMPLE a(3)=7 because the third Bell number is 5 and the number of partitions of 5 is 7. MAPLE with(combinat): a:=n->numbpart(bell(n)): seq(a(n), n=0..7); MATHEMATICA Table[PartitionsP[BellB[n]], {n, 0, 8}] (* Amiram Eldar, Nov 23 2019 *) CROSSREFS Cf. A003107, A000110. Sequence in context: A236810 A159034 A336249 * A260507 A173240 A042359 Adjacent sequences:  A120378 A120379 A120380 * A120382 A120383 A120384 KEYWORD nonn AUTHOR Zerinvary Lajos, Jun 29 2006 EXTENSIONS Edited by Emeric Deutsch and N. J. A. Sloane, Jul 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 06:30 EDT 2021. Contains 343965 sequences. (Running on oeis4.)