login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336249
a(n) = (n!)^n * Sum_{k=0..n} 1 / ((k!)^n * (n-k)!).
0
1, 2, 7, 172, 79745, 1375363126, 1445639634946657, 136511607703654177490168, 1597074319746489837872943936307201, 3049096207067719868011671739966873049880826186, 1209808678412717193052533393657339738066086793611743000000001
OFFSET
0,2
FORMULA
a(n) = (n!)^n * [x^n] exp(x) * Sum_{k>=0} x^k / (k!)^n.
a(n) ~ (2*Pi)^((n-1)/2) * n^(n^2 - n/2 + 1/2) / exp(n*(n-1) - 1/12). - Vaclav Kotesovec, Jul 14 2020
MATHEMATICA
Table[(n!)^n Sum[1/((k!)^n (n - k)!), {k, 0, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[Exp[x] Sum[x^k/(k!)^n, {k, 0, n}], {x, 0, n}], {n, 0, 10}]
PROG
(PARI) a(n) = (n!)^n * sum(k=0, n, 1 / ((k!)^n * (n-k)!)); \\ Michel Marcus, Jul 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 14 2020
STATUS
approved