login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120381 Number of partitions of Bell(n). 1

%I

%S 1,1,2,7,176,281589,5134205287973,158606118553696417431847045996,

%T 16514030227448471632774408193106540249556159974371768498637396492292

%N Number of partitions of Bell(n).

%H Amiram Eldar, <a href="/A120381/b120381.txt">Table of n, a(n) for n = 0..11</a>

%H Henry Bottomley, <a href="http://www.se16.info/js/partitions.htm">Partition and Composition calculator using a Java applet</a>

%H G. P. Michon, <a href="http://numericana.com/data/partition.htm">Partition Function</a>

%e a(3)=7 because the third Bell number is 5 and the number of partitions of 5 is 7.

%p with(combinat): a:=n->numbpart(bell(n)): seq(a(n),n=0..7);

%t Table[PartitionsP[BellB[n]], {n, 0, 8}] (* _Amiram Eldar_, Nov 23 2019 *)

%Y Cf. A003107, A000110.

%K nonn

%O 0,3

%A _Zerinvary Lajos_, Jun 29 2006

%E Edited by _Emeric Deutsch_ and _N. J. A. Sloane_, Jul 23 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 21:55 EDT 2021. Contains 345080 sequences. (Running on oeis4.)