login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101799
a(n)= det[A000522(i+j+1)], i,j=0...n, is the Hankel determinant of order n+1 of the arrangements numbers, s. A000522; a(n) = product( (p!)^2,p=0..n )*(n+1)!*LaguerreL(n+1,0,-1), n=0,1..., where LaguerreL(n,lambda,x) are generalized Laguerre polynomials; a(n)=A055209(n)*A002720(n+1);.
3
2, 7, 136, 30096, 128231424, 15917683507200, 81063451589345280000, 22675515428700722036736000000, 449302248871829829537656890982400000000, 790103237429135552913731284331032467210240000000000
OFFSET
0,1
FORMULA
a(n) ~ 2^(n+1/2) * Pi^(n+1) * n^(n^2 + 3*n + 25/12) / (A^2 * exp(3*n^2/2 + 3*n - 2*sqrt(n) + 1/3)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 11 2021
MATHEMATICA
a[n_] := Det[Table[E*Gamma[i+j+2, 1] // FunctionExpand, {i, 0, n}, {j, 0, n}]];
Table[a[n], {n, 0, 9}] (* Jean-François Alcover, May 23 2016 *)
Table[BarnesG[n+2]^2 * (n+1)! * LaguerreL[n+1, 0, -1], {n, 0, 12}] (* Vaclav Kotesovec, May 11 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Dec 16 2004
STATUS
approved