login
A101797
Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.
7
719, 1439, 10799, 14159, 48479, 68639, 109919, 214559, 231359, 253679, 285599, 298799, 329999, 350159, 405599, 429119, 430799, 451679, 488399, 491279, 507359, 508559, 533999, 557759, 666959, 671039, 918959, 1014719, 1017119, 1148879
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
FORMULA
a(n) = 16*A101794(n) - 1 = 4*A101795(n) + 3 = 2*A101796(n) + 1. - Amiram Eldar, May 13 2024
EXAMPLE
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 719 is a term.
MATHEMATICA
16#-1&/@Select[Range[80000], AllTrue[#*2^Range[2, 5]-1, PrimeQ]&] (* Harvey P. Dale, Apr 25 2015 *)
PROG
(PARI) is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024
CROSSREFS
Subsequence of A127576 and A101793.
Subsequence: A101997.
Sequence in context: A351669 A361345 A081425 * A144767 A127227 A139177
KEYWORD
easy,nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
STATUS
approved