login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.
7

%I #12 May 13 2024 02:14:35

%S 719,1439,10799,14159,48479,68639,109919,214559,231359,253679,285599,

%T 298799,329999,350159,405599,429119,430799,451679,488399,491279,

%U 507359,508559,533999,557759,666959,671039,918959,1014719,1017119,1148879

%N Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.

%H Amiram Eldar, <a href="/A101797/b101797.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)

%F a(n) = 16*A101794(n) - 1 = 4*A101795(n) + 3 = 2*A101796(n) + 1. - _Amiram Eldar_, May 13 2024

%e 4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 719 is a term.

%t 16#-1&/@Select[Range[80000],AllTrue[#*2^Range[2,5]-1,PrimeQ]&] (* _Harvey P. Dale_, Apr 25 2015 *)

%o (PARI) is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ _Amiram Eldar_, May 13 2024

%Y Cf. A002515, A101794, A101795, A101796, A101798.

%Y Subsequence of A127576 and A101793.

%Y Subsequence: A101997.

%K easy,nonn

%O 1,1

%A Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004