login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101997
Primes of the form 16*k-1 such that 4*k-1, 8*k-1, 32*k-1 and 64*k-1 are also primes.
8
719, 214559, 253679, 507359, 508559, 1017119, 1184399, 1363679, 2429279, 3242159, 4276799, 4490639, 6394799, 6486479, 7283999, 7464959, 7650719, 7683839, 8181359, 8553599, 8631599, 8981279, 9112319, 9428879, 10671119
OFFSET
1,1
LINKS
FORMULA
a(n) = 16*A101994(n) - 1 = 4*A101995(n) + 3 = 2*A101996(n) + 1. - Amiram Eldar, May 13 2024
EXAMPLE
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 719 is a term.
MATHEMATICA
Select[With[{c=2^Range[2, 6]}, Table[c n-1, {n, 700000}]], AllTrue[#, PrimeQ]&][[All, 3]] (* Harvey P. Dale, Nov 29 2018 *)
PROG
(PARI) is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024
CROSSREFS
Subsequence of A127576, A101793 and A101797.
Sequence in context: A139177 A064980 A290120 * A139195 A269124 A267336
KEYWORD
easy,nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004
STATUS
approved