login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101999
Primes of the form 64*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are also primes.
6
2879, 858239, 1014719, 2029439, 2034239, 4068479, 4737599, 5454719, 9717119, 12968639, 17107199, 17962559, 25579199, 25945919, 29135999, 29859839, 30602879, 30735359, 32725439, 34214399, 34526399, 35925119, 36449279
OFFSET
1,1
LINKS
FORMULA
a(n) = 64*A101994(n) - 1 = 16*A101995(n) + 15 = 8*A101996(n) + 7 = 4*A101997(n) + 3 = 2*A101998(n) + 1. - Amiram Eldar, May 13 2024
EXAMPLE
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 2879 is a term.
MATHEMATICA
64#-1&/@Select[Range[570000], AllTrue[#*2^Range[2, 6]-1, PrimeQ]&] (* Harvey P. Dale, Aug 07 2021 *)
PROG
(PARI) is(k) = if(k % 64 == 63, my(m = k\64 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024
CROSSREFS
Subsequence of A127579.
Sequence in context: A261859 A286526 A081427 * A066174 A175750 A179703
KEYWORD
easy,nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004
STATUS
approved