Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 13 2024 02:14:07
%S 2879,858239,1014719,2029439,2034239,4068479,4737599,5454719,9717119,
%T 12968639,17107199,17962559,25579199,25945919,29135999,29859839,
%U 30602879,30735359,32725439,34214399,34526399,35925119,36449279
%N Primes of the form 64*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are also primes.
%H Amiram Eldar, <a href="/A101999/b101999.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 64*A101994(n) - 1 = 16*A101995(n) + 15 = 8*A101996(n) + 7 = 4*A101997(n) + 3 = 2*A101998(n) + 1. - _Amiram Eldar_, May 13 2024
%e 4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 2879 is a term.
%t 64#-1&/@Select[Range[570000],AllTrue[#*2^Range[2,6]-1,PrimeQ]&] (* _Harvey P. Dale_, Aug 07 2021 *)
%o (PARI) is(k) = if(k % 64 == 63, my(m = k\64 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ _Amiram Eldar_, May 13 2024
%Y Cf. A101994, A101995, A101996, A101997, A101998.
%Y Subsequence of A127579.
%K easy,nonn
%O 1,1
%A Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004