|
|
A101996
|
|
Primes of the form 8*k-1 such that 4*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.
|
|
8
|
|
|
359, 107279, 126839, 253679, 254279, 508559, 592199, 681839, 1214639, 1621079, 2138399, 2245319, 3197399, 3243239, 3641999, 3732479, 3825359, 3841919, 4090679, 4276799, 4315799, 4490639, 4556159, 4714439, 5335559, 5731679
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 359 is a term.
|
|
MATHEMATICA
|
8#-1&/@Select[Range[720000], AllTrue[{4, 8, 16, 32, 64}#-1, PrimeQ]&] (* Harvey P. Dale, Jan 17 2023 *)
Select[Table[2^Range[2, 6] n-1, {n, 750000}], AllTrue[#, PrimeQ]&][[;; , 2]] (* Harvey P. Dale, Jun 03 2023 *)
|
|
PROG
|
(PARI) is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|