login
A101794
Numbers k such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are all primes.
10
45, 90, 675, 885, 3030, 4290, 6870, 13410, 14460, 15855, 17850, 18675, 20625, 21885, 25350, 26820, 26925, 28230, 30525, 30705, 31710, 31785, 33375, 34860, 41685, 41940, 57435, 63420, 63570, 71805, 74025, 78585, 83865, 85230, 93075
OFFSET
1,1
LINKS
EXAMPLE
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 45 is a term.
MATHEMATICA
Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
PROG
(PARI) is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1); \\ Amiram Eldar, May 13 2024
CROSSREFS
Subsequence of A005099, A005122 and A101790.
Subsequence: A101994.
Sequence in context: A184540 A115827 A070002 * A124017 A121925 A044183
KEYWORD
easy,nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004
STATUS
approved