login
A272409
Primes p == 1 (mod 3) for which A261029(46*p) = 2.
4
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 613, 631, 643, 673, 709, 733, 739, 787, 811, 829, 859, 877, 907, 1009, 1063, 1093, 1117, 1279, 1297, 1381, 1483, 1489, 1723
OFFSET
1,1
COMMENTS
By theorem in A272384, case q=23, the sequence is finite with a(n)<2116.
LINKS
MATHEMATICA
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers];
a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
Select[Select[Range[1, 2002, 3], PrimeQ], a29[ 46 # ] == 2&] (* Jean-François Alcover, Dec 06 2018 *)
KEYWORD
nonn,fini,full
AUTHOR
Vladimir Shevelev, Apr 29 2016
EXTENSIONS
All terms (after first author's ones) were calculated by Peter J. C. Moses, Apr 29 2016
STATUS
approved