login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272411
G.f. A(x) satisfies: A( A(x)^2 - x*A(x) ) = x^3.
2
1, 1, -1, 2, -6, 16, -48, 155, -506, 1706, -5888, 20608, -73152, 262672, -951929, 3478158, -12798568, 47384216, -176387016, 659776638, -2478574412, 9347514586, -35376839998, 134317287748, -511463365764, 1952816800973, -7474463834606, 28673987914262, -110233267218581, 424608422717362, -1638541384230970, 6333831090142919, -24522697340016084, 95086658516947002
OFFSET
1,4
LINKS
FORMULA
If A(B(x)) = x, then g.f. A(x) and B(x) satisfy:
(1) A(x)^2 - x*A(x) = B(x^3).
(2) A(x) = x - x*C( -B(x^3)/x^2 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n) ~ (-1)^n * c * d^n / n^(3/2), where d = 4.06250021724219826323934729... and c = 0.03554943075321525313806189... . - Vaclav Kotesovec, May 03 2016
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 + 2*x^4 - 6*x^5 + 16*x^6 - 48*x^7 + 155*x^8 - 506*x^9 + 1706*x^10 - 5888*x^11 + 20608*x^12 - 73152*x^13 + 262672*x^14 +...
where A( A(x)^2 - x*A(x) ) = x^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 - x^4 + 2*x^5 - 7*x^6 + 16*x^7 - 48*x^8 + 158*x^9 - 506*x^10 + 1706*x^11 - 5900*x^12 + 20608*x^13 - 73152*x^14 +...
A(x)^2 - x*A(x) = x^3 - x^6 + 3*x^9 - 12*x^12 + 56*x^15 - 282*x^18 + 1494*x^21 - 8210*x^24 + 46365*x^27 - 267444*x^30 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 + 3*x^3 - 12*x^4 + 56*x^5 - 282*x^6 + 1494*x^7 - 8210*x^8 + 46365*x^9 - 267444*x^10 + 1568995*x^11 - 9332820*x^12 + 56156610*x^13 +...
such that A(x)^2 - x*A(x) = B(x^3).
PROG
(PARI) {a(n) = my(A=[1, 1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^3 - subst(F, x, F^2 - x*F), #A+1) ); A[n]}
for(n=1, 50, print1(a(n), ", "))
CROSSREFS
Cf. A273955.
Sequence in context: A367042 A291189 A214843 * A151528 A132803 A079565
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 29 2016
STATUS
approved