login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272413
Asymptotic mean (normalized by n) of the second longest cycle in a random permutation on n symbols.
3
2, 0, 9, 5, 8, 0, 8, 7, 4, 2, 8, 4, 1, 8, 5, 8, 1, 3, 9, 8, 9, 0, 2, 9, 6, 5, 7, 8, 1, 5, 3, 4, 9, 5, 5, 6, 9, 0, 1, 1, 3, 1, 0, 3, 2, 0, 1, 6, 2, 3, 4, 3, 3, 0, 0, 0, 6, 9, 2, 1, 5, 9, 8, 8, 1, 4, 8, 5, 3, 1, 0, 8, 8, 4, 6, 4, 2, 8, 7, 2, 6, 3, 4, 2, 8, 7, 1, 6, 3, 6, 8, 2, 9, 8, 8, 3, 4, 7
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.
LINKS
Xavier Gourdon, Combinatoire, Algorithmique et Géométrie des Polynomes Ecole Polytechnique, Paris 1996, page 152 [in French]
Eric Weisstein's MathWorld, Golomb-Dickman Constant
FORMULA
Integral_{0..infinity} 1 - exp(Ei(-x))*(1 - Ei(-x)) dx, where Ei is the exponential integral.
EXAMPLE
0.20958087428418581398902965781534955690113103201623433...
MATHEMATICA
digits = 98; NIntegrate[1 - Exp[ExpIntegralEi[-x]]*(1 - ExpIntegralEi[-x]), {x, 0, 200}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First
CROSSREFS
Sequence in context: A262177 A136319 A176057 * A152566 A021481 A372910
KEYWORD
nonn,cons
AUTHOR
STATUS
approved