|
|
A247398
|
|
Decimal expansion of a constant 'v' such that the asymptotic variance of the distribution of the longest cycle given a random n-permutation evaluates as v*n^2.
|
|
4
|
|
|
0, 3, 6, 9, 0, 7, 8, 3, 0, 0, 6, 4, 8, 5, 2, 2, 0, 2, 1, 7, 7, 1, 0, 7, 0, 0, 2, 9, 2, 9, 3, 2, 7, 6, 4, 0, 2, 2, 4, 6, 2, 2, 3, 3, 1, 0, 5, 8, 6, 8, 5, 1, 9, 6, 4, 7, 6, 2, 2, 7, 8, 2, 0, 7, 3, 0, 4, 8, 9, 1, 9, 4, 7, 1, 5, 3, 0, 8, 0, 6, 2, 8, 5, 1, 1, 8, 9, 3, 0, 4, 4, 9, 1, 0, 3, 4, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.
|
|
LINKS
|
|
|
FORMULA
|
v = integral_{0..infinity} x-e^Ei(-x)*x dx - (integral_{0..infinity} 1-e^Ei(-x) dx)^2, where Ei is the exponential integral function. [corrected by Vaclav Kotesovec, Aug 12 2019]
|
|
EXAMPLE
|
0.03690783006485220217710700292932764...
|
|
MAPLE
|
evalf(int((x-exp(Ei(-x))*x), x=0..infinity) - int( (1-exp(Ei(-x))), x=0..infinity)^2, 50); # Vaclav Kotesovec, Aug 12 2019
|
|
MATHEMATICA
|
v = NIntegrate[x - E^ExpIntegralEi[-x]*x, {x, 0, Infinity}, WorkingPrecision -> 80] - NIntegrate[1 - E^ExpIntegralEi[-x], {x, 0, Infinity}, WorkingPrecision -> 80]^2; Join[{0}, RealDigits[v, 10, 40] // First]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|