login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247398 Decimal expansion of a constant 'v' such that the asymptotic variance of the distribution of the longest cycle given a random n-permutation evaluates as v*n^2. 4
0, 3, 6, 9, 0, 7, 8, 3, 0, 0, 6, 4, 8, 5, 2, 2, 0, 2, 1, 7, 7, 1, 0, 7, 0, 0, 2, 9, 2, 9, 3, 2, 7, 6, 4, 0, 2, 2, 4, 6, 2, 2, 3, 3, 1, 0, 5, 8, 6, 8, 5, 1, 9, 6, 4, 7, 6, 2, 2, 7, 8, 2, 0, 7, 3, 0, 4, 8, 9, 1, 9, 4, 7, 1, 5, 3, 0, 8, 0, 6, 2, 8, 5, 1, 1, 8, 9, 3, 0, 4, 4, 9, 1, 0, 3, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.
LINKS
Eric Weisstein's MathWorld, Golomb-Dickman Constant
FORMULA
v = integral_{0..infinity} x-e^Ei(-x)*x dx - (integral_{0..infinity} 1-e^Ei(-x) dx)^2, where Ei is the exponential integral function. [corrected by Vaclav Kotesovec, Aug 12 2019]
EXAMPLE
0.03690783006485220217710700292932764...
MAPLE
evalf(int((x-exp(Ei(-x))*x), x=0..infinity) - int( (1-exp(Ei(-x))), x=0..infinity)^2, 50); # Vaclav Kotesovec, Aug 12 2019
MATHEMATICA
v = NIntegrate[x - E^ExpIntegralEi[-x]*x, {x, 0, Infinity}, WorkingPrecision -> 80] - NIntegrate[1 - E^ExpIntegralEi[-x], {x, 0, Infinity}, WorkingPrecision -> 80]^2; Join[{0}, RealDigits[v, 10, 40] // First]
CROSSREFS
Cf. A084945.
Sequence in context: A197292 A232817 A346640 * A094560 A179615 A183033
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Aug 12 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 04:06 EDT 2024. Contains 375959 sequences. (Running on oeis4.)