|
|
A247399
|
|
Number of length n+4 0..3 arrays with no disjoint pairs in any consecutive five terms having the same sum.
|
|
1
|
|
|
200, 264, 340, 428, 528, 640, 864, 1136, 1456, 1824, 2240, 3072, 4096, 5312, 6720, 8320, 11520, 15488, 20224, 25728, 32000, 44544, 60160, 78848, 100608, 125440, 175104, 237056, 311296, 397824, 496640, 694272, 941056, 1236992, 1582080
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-5) - 8*a(n-10).
Empirical g.f.: 4*x*(50 + 66*x + 85*x^2 + 107*x^3 + 132*x^4 - 140*x^5 - 180*x^6 - 226*x^7 - 278*x^8 - 336*x^9) / ((1 - 2*x^5)*(1 - 4*x^5)). - Colin Barker, Nov 07 2018
|
|
EXAMPLE
|
Some solutions for n=6:
..3....2....1....0....0....0....3....3....1....3....1....3....2....1....2....1
..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3
..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3
..0....0....3....2....0....1....0....1....2....0....1....1....1....2....2....2
..2....3....3....3....3....0....3....1....3....0....0....2....1....2....2....3
..1....1....2....0....0....0....3....3....1....3....1....3....0....1....2....1
..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3
..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3
..0....0....3....2....0....3....0....1....0....0....1....1....1....2....2....2
..2....3....3....1....3....0....3....1....3....0....0....2....1....2....2....3
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|