login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of length n+4 0..3 arrays with no disjoint pairs in any consecutive five terms having the same sum.
1

%I #9 Nov 07 2018 09:56:45

%S 200,264,340,428,528,640,864,1136,1456,1824,2240,3072,4096,5312,6720,

%T 8320,11520,15488,20224,25728,32000,44544,60160,78848,100608,125440,

%U 175104,237056,311296,397824,496640,694272,941056,1236992,1582080

%N Number of length n+4 0..3 arrays with no disjoint pairs in any consecutive five terms having the same sum.

%H R. H. Hardin, <a href="/A247399/b247399.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-5) - 8*a(n-10).

%F Empirical g.f.: 4*x*(50 + 66*x + 85*x^2 + 107*x^3 + 132*x^4 - 140*x^5 - 180*x^6 - 226*x^7 - 278*x^8 - 336*x^9) / ((1 - 2*x^5)*(1 - 4*x^5)). - _Colin Barker_, Nov 07 2018

%e Some solutions for n=6:

%e ..3....2....1....0....0....0....3....3....1....3....1....3....2....1....2....1

%e ..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3

%e ..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3

%e ..0....0....3....2....0....1....0....1....2....0....1....1....1....2....2....2

%e ..2....3....3....3....3....0....3....1....3....0....0....2....1....2....2....3

%e ..1....1....2....0....0....0....3....3....1....3....1....3....0....1....2....1

%e ..2....3....0....0....0....2....3....2....1....0....1....3....1....2....1....3

%e ..2....3....3....0....2....0....2....1....1....1....3....3....3....0....0....3

%e ..0....0....3....2....0....3....0....1....0....0....1....1....1....2....2....2

%e ..2....3....3....1....3....0....3....1....3....0....0....2....1....2....2....3

%Y Column 3 of A247404.

%K nonn

%O 1,1

%A _R. H. Hardin_, Sep 16 2014