The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136319 Decimal expansion of [phi, phi, ...] = (phi + sqrt(phi^2 + 4))/2. 4
 2, 0, 9, 5, 2, 9, 3, 9, 8, 5, 2, 2, 3, 9, 1, 4, 4, 9, 2, 7, 4, 6, 8, 1, 6, 7, 1, 8, 8, 6, 6, 2, 8, 2, 5, 8, 3, 1, 6, 6, 4, 1, 1, 5, 2, 7, 5, 7, 3, 8, 3, 6, 8, 9, 4, 4, 0, 4, 7, 7, 5, 5, 4, 6, 6, 5, 4, 5, 3, 7, 8, 5, 0, 7, 6, 3, 9, 7, 8, 6, 1, 3, 7, 5, 2, 1, 8, 3, 6, 1, 4, 3, 0, 7, 4, 7, 1, 3, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A geometric realization of this number is the ratio of length to width of a meta-golden rectangle. See A188635 for details and continued fraction. - Clark Kimberling, Apr 06 2011 This number is the asymptotic limit of the ratio of consecutive terms of the sequence of the number of Khalimsky-continuous functions with four-point codomain. See the FORMULA section of A131935 for details. (Cf. Samieinia 2010.) - Geoffrey Caveney, Apr 17 2014 This number is the largest zero of the polynomial z^4 - z^3 - 3*z^2 + z + 1. (Cf. Evans, Hollmann, Krattenthaler and Xiang 1999, p. 107.) - Geoffrey Caveney, Apr 17 2014 Calling this number mu, log(mu) = arcsinh(phi/2). - Geoffrey Caveney, Apr 21 2014 LINKS R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang,  Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119. Shiva Samieinia, Digital straight line segments and curves. Licentiate Thesis. Stockholm University, Department of Mathematics, Report 2007:6. Shiva Samieinia, The number of Khalimsky-continuous functions on intervals, Rocky Mountain J. Math., 40.5 (2010), 1667-1687. Eric Weisstein's World of Mathematics, Silver Ratio Wikipedia, Silver ratio FORMULA (phi + sqrt(phi^2 + 4))/2. Also, (1/4)*(1 + sqrt(5) + sqrt(H)), where H = 22 + 2*sqrt(5). (corrected by Jonathan Sondow, Apr 18 2014) phi*(1 + sqrt(7 - 2*sqrt(5)))/2. - Geoffrey Caveney, Apr 19 2014 exp(arcsinh(cos(Pi/5))). - Geoffrey Caveney, Apr 22 2014 cos(Pi/5) + sqrt(1+cos(Pi/5)^2). - Geoffrey Caveney, Apr 23 2014 MAPLE Digits:=100: evalf((1+sqrt(5))*(1+sqrt(7-2*sqrt(5)))/4); # Wesley Ivan Hurt, Apr 22 2014 MATHEMATICA (GoldenRatio + Sqrt[GoldenRatio^2 + 4])/2 CROSSREFS Cf. A001622, A014176, A188635. Sequence in context: A019693 A007493 A262177 * A176057 A272413 A152566 Adjacent sequences:  A136316 A136317 A136318 * A136320 A136321 A136322 KEYWORD cons,nonn AUTHOR Ryan Tavenner (tavs(AT)pacbell.net), Mar 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 05:44 EDT 2021. Contains 343072 sequences. (Running on oeis4.)