login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272415
Asymptotic mean (normalized by n) of the third longest cycle in a random permutation on n symbols.
1
0, 8, 8, 3, 1, 6, 0, 9, 8, 8, 8, 3, 1, 5, 3, 6, 3, 1, 0, 1, 0, 5, 4, 2, 5, 6, 6, 4, 2, 9, 8, 7, 6, 7, 0, 1, 1, 7, 2, 3, 6, 4, 3, 2, 0, 4, 5, 1, 1, 6, 3, 3, 3, 0, 4, 6, 6, 7, 8, 7, 4, 0, 9, 3, 0, 9, 4, 2, 7, 0, 2, 2, 3, 9, 5, 7, 4, 6, 0, 9, 9, 0, 6, 0, 9, 6, 5, 9, 4, 8, 5, 1, 3, 9, 9, 7, 1, 5, 5
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.
LINKS
Xavier Gourdon, Combinatoire, Algorithmique et Géométrie des Polynomes Ecole Polytechnique, Paris 1996, page 152 (in French)
Eric Weisstein's MathWorld, Golomb-Dickman Constant
FORMULA
Integral_{0..infinity} 1 - e^Ei(-x)*(1 - Ei(-x) + (1/2)*Ei(-x)^2) dx, where Ei is the exponential integral.
EXAMPLE
0.0883160988831536310105425664298767011723643204511633304667874093...
MATHEMATICA
digits = 98; NIntegrate[1 - E^ExpIntegralEi[-x]*(1 - ExpIntegralEi[-x] + (1/2)*ExpIntegralEi[-x]^2), {x, 0, 100}, WorkingPrecision -> digits + 5] // Join[{0}, RealDigits[#, 10, digits][[1]]]&
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved