login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291189
G.f. satisfies: A(x - A(x) + A(x)^2) = -x^4.
2
1, 1, 2, 6, 16, 48, 152, 501, 1690, 5822, 20388, 72360, 259688, 940792, 3435904, 12636554, 46760376, 173971252, 650380288, 2441905192, 9203979808, 34813551616, 132101846848, 502732914346, 1918353118348, 7338208929260, 28134551443480, 108094972590872, 416122805092224, 1604832481200352, 6199797669769760, 23989294121910790, 92962226232374892, 360749306397285812
OFFSET
1,3
COMMENTS
At what positions n is a(n) odd?
Compare g.f. to: C(x - C(x) + C(x)^2) = 0, trivial when C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) satisfies: x - A(x) + A(x)^2 = Ai(-x^4) where Ai( A(x) ) = x.
a(n) ~ c * d^n / n^(3/2), where d = 4.05999022767846206402248334679744980701174... and c = 0.14415462031792796731396571657... - Vaclav Kotesovec, Aug 28 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 48*x^6 + 152*x^7 + 501*x^8 + 1690*x^9 + 5822*x^10 + 20388*x^11 + 72360*x^12 + 259688*x^13 + 940792*x^14 + 3435904*x^15 + 12636554*x^16 + 46760376*x^17 + 173971252*x^18 + 650380288*x^19 + 2441905192*x^20 + 9203979808*x^21 +...
where A(x - A(x) + A(x)^2) = -x^4.
RELATED SERIES.
Define Ai(x) such that Ai(A(x)) = x, where Ai(x) begins:
Ai(x) = x - x^2 - x^4 + 4*x^5 - 6*x^6 + 8*x^7 - 30*x^8 + 92*x^9 - 190*x^10 + 428*x^11 - 1276*x^12 + 3524*x^13 - 8572*x^14 + 22120*x^15 - 62215*x^16 + 169464*x^17 - 444860*x^18 + 1202364*x^19 - 3340582*x^20 + 9167812*x^21 - 24936852*x^22 + 68746520*x^23 - 191319986*x^24 + 530404940*x^25 +...
then x - A(x) + A(x)^2 = Ai(-x^4),
and Ai(x) - Ai( -Ai(x)^4 ) = x - x^2.
PROG
(PARI) {a(n) = my(A=x, V=[1, 1, 2, 6]); for(i=1, n, V=concat(V, 0); A=x*Ser(V); V[#V]=Vec(subst(A, x, x - A + A^2))[#V-3]); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A291190.
Sequence in context: A046721 A230929 A367042 * A214843 A272411 A151528
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2017
STATUS
approved