login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291190
G.f. satisfies: A(x - A(x) + A(x)^2) = x^4.
3
1, 1, 2, 4, 12, 36, 112, 361, 1186, 3974, 13524, 46612, 162384, 570880, 2022800, 7216480, 25900036, 93449752, 338772408, 1233326352, 4507204720, 16528765376, 60805491392, 224335046602, 829851744732, 3077246265612, 11436732740472, 42593968518536, 158941264247584, 594169284671232, 2224933015422432, 8344687554060528, 31343475208937024, 117893400330845424, 444019302263216224
OFFSET
1,3
COMMENTS
At what positions n is a(n) odd?
Compare g.f. to: C(x - C(x) + C(x)^2) = 0, trivial when C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) satisfies: x - A(x) + A(x)^2 = Ai(x^4) where Ai( A(x) ) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.93460560538976027645396919840971895891402... and c = 0.137506207625998211308202134... - Vaclav Kotesovec, Aug 28 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 361*x^8 + 1186*x^9 + 3974*x^10 + 13524*x^11 + 46612*x^12 + 162384*x^13 + 570880*x^14 + 2022800*x^15 + 7216480*x^16 + 25900036*x^17 + 93449752*x^18 + 338772408*x^19 + 1233326352*x^20 + 4507204720*x^21 +...
where A(x - A(x) + A(x)^2) = x^4.
RELATED SERIES.
Define Ai(x) such that Ai(A(x)) = x, where Ai(x) begins:
Ai(x) = x - x^2 + x^4 - 4*x^5 + 6*x^6 - 28*x^8 + 92*x^9 - 146*x^10 - 36*x^11 + 968*x^12 - 3076*x^13 + 4628*x^14 + 3112*x^15 - 39947*x^16 + 119776*x^17 - 163020*x^18 - 205356*x^19 + 1800122*x^20 - 5042852*x^21 + 5978324*x^22 + 12502776*x^23 - 85355762*x^24 + 222312900*x^25 +...
then x - A(x) + A(x)^2 = Ai(x^4),
and Ai(x) - Ai( Ai(x)^4 ) = x - x^2.
PROG
(PARI) {a(n) = my(A=x, V=[1, 1, 2, 4]); for(i=1, n, V=concat(V, 0); A=x*Ser(V); V[#V]=Vec(subst(A, x, x - A + A^2))[#V-3]); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A291189.
Sequence in context: A226022 A272463 A217699 * A273955 A054542 A214198
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2017
STATUS
approved