login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x - A(x) + A(x)^2) = x^4.
3

%I #19 Aug 28 2017 07:44:12

%S 1,1,2,4,12,36,112,361,1186,3974,13524,46612,162384,570880,2022800,

%T 7216480,25900036,93449752,338772408,1233326352,4507204720,

%U 16528765376,60805491392,224335046602,829851744732,3077246265612,11436732740472,42593968518536,158941264247584,594169284671232,2224933015422432,8344687554060528,31343475208937024,117893400330845424,444019302263216224

%N G.f. satisfies: A(x - A(x) + A(x)^2) = x^4.

%C At what positions n is a(n) odd?

%C Compare g.f. to: C(x - C(x) + C(x)^2) = 0, trivial when C(x) = x + C(x)^2 is the g.f. of the Catalan numbers (A000108).

%H Paul D. Hanna, <a href="/A291190/b291190.txt">Table of n, a(n) for n = 1..512</a>

%F G.f. A(x) satisfies: x - A(x) + A(x)^2 = Ai(x^4) where Ai( A(x) ) = x.

%F a(n) ~ c * d^n / n^(3/2), where d = 3.93460560538976027645396919840971895891402... and c = 0.137506207625998211308202134... - _Vaclav Kotesovec_, Aug 28 2017

%e G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 361*x^8 + 1186*x^9 + 3974*x^10 + 13524*x^11 + 46612*x^12 + 162384*x^13 + 570880*x^14 + 2022800*x^15 + 7216480*x^16 + 25900036*x^17 + 93449752*x^18 + 338772408*x^19 + 1233326352*x^20 + 4507204720*x^21 +...

%e where A(x - A(x) + A(x)^2) = x^4.

%e RELATED SERIES.

%e Define Ai(x) such that Ai(A(x)) = x, where Ai(x) begins:

%e Ai(x) = x - x^2 + x^4 - 4*x^5 + 6*x^6 - 28*x^8 + 92*x^9 - 146*x^10 - 36*x^11 + 968*x^12 - 3076*x^13 + 4628*x^14 + 3112*x^15 - 39947*x^16 + 119776*x^17 - 163020*x^18 - 205356*x^19 + 1800122*x^20 - 5042852*x^21 + 5978324*x^22 + 12502776*x^23 - 85355762*x^24 + 222312900*x^25 +...

%e then x - A(x) + A(x)^2 = Ai(x^4),

%e and Ai(x) - Ai( Ai(x)^4 ) = x - x^2.

%o (PARI) {a(n) = my(A=x,V=[1, 1, 2,4]); for(i=1,n, V=concat(V,0); A=x*Ser(V); V[#V]=Vec(subst(A,x,x - A + A^2))[#V-3]);V[n]}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A291189.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Aug 20 2017