login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217699
G.f. A(x) satisfies: 1 - x*A(x) + x^2*A(x)^2 = Sum_{n>=0} (-x)^(n^2).
0
1, 1, 2, 4, 12, 36, 112, 360, 1185, 3970, 13510, 46564, 162212, 570256, 2020512, 7208015, 25868510, 93331707, 338328434, 1231650330, 4500857724, 16504664528, 60713760264, 223985185896, 828514954047, 3072130220310, 11417124679980, 42518719357968, 158652141816560
OFFSET
0,3
FORMULA
a(n) = (-1)^n*A223027(n+1)/2.
G.f.: Q(x)*C(Q(x))/x where Q(x) = Sum_{n>=1} -(-x)^(n^2) and C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 112*x^6 + 360*x^7 +...
where
1 - x*A(x) + x^2*A(x)^2 = 1 - x + x^4 - x^9 + x^16 - x^25 + x^36 - x^49 +-...
PROG
(PARI) {a(n)=local(Q=sum(k=1, sqrtint(n+1), (-x)^(k^2))+x^2*O(x^n)); polcoeff( (1-sqrt(1+4*Q))/(2*x), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A223027.
Sequence in context: A149843 A226022 A272463 * A291190 A273955 A054542
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 19 2013
STATUS
approved