login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172480
Odd primes p such that there are as many primitive roots (mod p) in the interval [0,p/2] as in the interval [p/2,p].
3
5, 7, 13, 17, 29, 31, 37, 41, 43, 53, 61, 67, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 307, 313, 317, 337, 349, 353, 367, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 487, 509, 521, 541, 557, 569
OFFSET
1,1
COMMENTS
The sequence contains all the primes of the form 4m+1 (A002144).
The sequence also contains some primes of the form 4m+3 (see them in A172490).
LINKS
MAPLE
filter:= proc(p) local m; uses NumberTheory;
if not isprime(p) then return false fi;
if p mod 4 = 1 then return true fi;
m:= Totient(Totient(p))/2;
PrimitiveRoot(p, ith=m+1)=PrimitiveRoot(p, greaterthan=floor(p/2))
end proc:
select(filter, [seq(i, i=5..1000, 2)]); # Robert Israel, Nov 23 2019
MATHEMATICA
<< NumberTheory`NumberTheoryFunctions` m = 2; s = {}; While[m < 10000, m++; p = Prime[m]; If[Mod[p, 4] == 1, s = {s, p}, q = (p - 1)/2; g = PrimitiveRoot[p]; se = Select[Range[p - 1], GCD[ #, p - 1] == 1 &]; e = Length[se]; j = 0; t = 0; While[j < e, j++; h = PowerMod[g, se[[j]], p]; If[h <= q, t = t + 1, ] ]; If[e == 2t, s = {s, p}, ] ] ]; s = Flatten[s]
CROSSREFS
A002144 is a subsequence.
Sequence in context: A314323 A314324 A247011 * A285886 A106069 A339691
KEYWORD
nonn
AUTHOR
Emmanuel Vantieghem, Feb 04 2010
STATUS
approved