|
|
A172477
|
|
The number of ways to dissect an n X n square into polyominoes of size n.
|
|
6
|
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
J. de Ruiter, On Jigsaw Sudoku Puzzles and Related Topics, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010. [From Johan de Ruiter, Jun 15 2010]
|
|
LINKS
|
Table of n, a(n) for n=1..9.
Jiahua Chen, Aneesha Manne, Rebecca Mendum, Poonam Sahoo, Alicia Yang, Minority Voter Distributions and Partisan Gerrymandering, arXiv:1911.09792 [cs.CY], 2019.
R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
R. S. Harris, Counting Polyomino Tilings [From Bob Harris (me13013(AT)gmail.com), Mar 13 2010]
|
|
EXAMPLE
|
A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally.
|
|
CROSSREFS
|
Intersects with A167251, A167254, A167255, A167258.
Sequence in context: A347014 A006121 A110951 * A265942 A120597 A322295
Adjacent sequences: A172474 A172475 A172476 * A172478 A172479 A172480
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Johan de Ruiter, Feb 04 2010
|
|
EXTENSIONS
|
a(9) from Bob Harris (me13013(AT)gmail.com), Mar 13 2010
|
|
STATUS
|
approved
|
|
|
|