login
A172477
The number of ways to dissect an n X n square into polyominoes of size n.
7
1, 2, 10, 117, 4006, 451206, 158753814, 187497290034, 706152947468301
OFFSET
1,2
LINKS
Jiahua Chen, Aneesha Manne, Rebecca Mendum, Poonam Sahoo, Alicia Yang, Minority Voter Distributions and Partisan Gerrymandering, arXiv:1911.09792 [cs.CY], 2019.
Johan de Ruiter, On Jigsaw Sudoku Puzzles and Related Topics, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010.
Christopher Donnay and Matthew Kahle, Asymptotics of Redistricting the n X n grid, arXiv:2311.13550 [math.CO], 2023.
R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
R. S. Harris, Counting Polyomino Tilings [From Bob Harris (me13013(AT)gmail.com), Mar 13 2010]
FORMULA
a(3) = A167243(3). a(4) = A167248(4). a(5) = A167251(5). a(6) = A167254(6). a(7) = A167255(7). a(8) = A167258(8). - R. J. Mathar, Oct 13 2024
EXAMPLE
A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally.
CROSSREFS
Intersects with A167251, A167254, A167255, A167258.
Diagonal of A348452.
Sequence in context: A356514 A006121 A110951 * A265942 A120597 A322295
KEYWORD
nonn
AUTHOR
Johan de Ruiter, Feb 04 2010
EXTENSIONS
a(9) from Bob Harris (me13013(AT)gmail.com), Mar 13 2010
STATUS
approved