login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238658
Number of partitions of n having population standard deviation < 2.
8
1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 44, 57, 72, 92, 114, 143, 179, 216, 267, 321, 389, 470, 562, 668, 798, 946, 1100, 1295, 1521, 1759, 2059, 2392, 2742, 3206, 3674, 4172, 4831, 5566, 6265, 7115, 8089, 9152, 10381, 11664, 13131, 14927, 16666, 18565, 20977
OFFSET
1,2
FORMULA
a(n) + A238662(n) = A000041(n).
EXAMPLE
There are 22 partitions of 8, whose population standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 19.
MATHEMATICA
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (* A238658 *)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (* A238659 *)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (* A238660 *)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (* A238661 *)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (* A238662 *)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (* plot of st deviations of partitions of 30 *)
(* Second program: *)
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, If[s/c - (m/c)^2 >= 4, 1, 0], If[i == 1, b[0, 0, m + n, s + n, c + n], Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
a[n_] := PartitionsP[n] - b[n, n, 0, 0, 0];
Array[a, 50] (* Jean-François Alcover, May 27 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved