login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238657
Number of partitions of n having standard deviation σ > 5.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 11, 16, 25, 34, 45, 64, 87, 121, 160, 212, 279, 369, 481, 614, 797, 1027, 1308, 1670, 2102, 2661, 3345, 4189, 5224, 6494, 8069, 9982, 12281, 15093, 18508, 22731, 27564, 33639, 40757, 49496, 59838, 72228
OFFSET
1,14
COMMENTS
Regarding "standard deviation" see Comments at A238616.
EXAMPLE
There are 30 partitions of 9, whose standard deviations are given by these approximations: 0., 3.5, 2.5, 2.82843, 1.5, 2.16025, 2.16506, 0.5, 1.63299, 1.41421, 1.63936, 1.6, 1.41421, 0.816497, 1.29904, 1.08972, 1.16619, 1.11803, 0., 0.829156, 0.979796, 0.433013, 0.748331, 0.763763, 0.699854, 0.4, 0.5, 0.451754, 0.330719, 0, so that a(9) = 0.
MATHEMATICA
z = 53; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t];
s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]
Table[Count[g[n], p_ /; s[p] > 3], {n, z}] (*A238655*)
Table[Count[g[n], p_ /; s[p] > 4], {n, z}] (*A238656*)
Table[Count[g[n], p_ /; s[p] > 5], {n, z}] (*A238657*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st dev's of partitions of 30*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved