%I #15 Mar 11 2014 13:39:16
%S 0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,5,9,11,16,25,34,45,64,87,121,160,212,
%T 279,369,481,614,797,1027,1308,1670,2102,2661,3345,4189,5224,6494,
%U 8069,9982,12281,15093,18508,22731,27564,33639,40757,49496,59838,72228
%N Number of partitions of n having standard deviation σ > 5.
%C Regarding "standard deviation" see Comments at A238616.
%e There are 30 partitions of 9, whose standard deviations are given by these approximations: 0., 3.5, 2.5, 2.82843, 1.5, 2.16025, 2.16506, 0.5, 1.63299, 1.41421, 1.63936, 1.6, 1.41421, 0.816497, 1.29904, 1.08972, 1.16619, 1.11803, 0., 0.829156, 0.979796, 0.433013, 0.748331, 0.763763, 0.699854, 0.4, 0.5, 0.451754, 0.330719, 0, so that a(9) = 0.
%t z = 53; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t];
%t s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]
%t Table[Count[g[n], p_ /; s[p] > 3], {n, z}] (*A238655*)
%t Table[Count[g[n], p_ /; s[p] > 4], {n, z}] (*A238656*)
%t Table[Count[g[n], p_ /; s[p] > 5], {n, z}] (*A238657*)
%t t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
%t ListPlot[Sort[t[30]]] (*plot of st dev's of partitions of 30*)
%Y Cf. A238616, A238661, A238655, A238657.
%K nonn,easy
%O 1,14
%A _Clark Kimberling_, Mar 03 2014