login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195510
E.g.f. satisfies: A(x) = (exp(x*A(x)) + exp(x/A(x)))/2.
3
1, 1, 1, 4, 25, 156, 1561, 15968, 205521, 2996416, 48245521, 891169632, 17701061929, 390008578688, 9273243108585, 237666643184896, 6557636429111329, 192526245072832512, 6029011794295629217, 199832740470058237952, 7000664928137597341881
OFFSET
0,4
LINKS
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * (A(x)^n + 1/A(x)^n)/2.
E.g.f. satisfies: A(x) = B(x/A(x)) where B(x) = A(x*B(x)) is the g.f. of A195511 and satisfies: B(x) = (exp(x) + exp(x*B(x)^2))/2.
a(n) ~ sqrt(s^3*(-1+2*r*s+s^2)/(-2*s + r^2*s*(1+s^2) + r*(-1+2*s^2+s^4))) * n^(n-1) / (exp(n) * r^n), where r = 0.53064794557035571... and s = 2.58970226260372420623... are the roots of the equations exp(r/s) + exp(r*s) = 2*s, exp(r*s)*r*s = exp(r/s)*r/s + 2*s. - Vaclav Kotesovec, Jan 11 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 156*x^5/5! +...
Related series begin:
exp(x*A(x)) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 376*x^5/5! + 3247*x^6/6! +...
exp(x/A(x)) = 1 + x - x^2/2! - 2*x^3/3! - 3*x^4/4! - 64*x^5/5! - 125*x^6/6! -...
The g.f. B(x) of A195511 begins:
B(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 197*x^4/4! + 2801*x^5/5! + 50407*x^6/6! +...
where A(x*B(x)) = B(x) = (exp(x) + exp(x*B(x)^2))/2.
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), A=1+X); for(i=1, n, A=(exp(X*A)+exp(X/A))/2); n!*polcoeff(A, n)}
CROSSREFS
Cf. A195511.
Sequence in context: A236580 A010909 A079750 * A264775 A073517 A208264
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 19 2011
STATUS
approved