login
A367181
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^2.
5
1, 1, 3, 22, 261, 4186, 85035, 2096242, 60793257, 2028053146, 76512294567, 3221179205410, 149713378082301, 7614267616582810, 420634056602820099, 25081994054279063506, 1605673188973569254481, 109838361160586478627226, 7995918540574019507985471
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (3*n-2*k)!/(3*n-3*k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (3*n-2*k)!/(3*n-3*k+1)!*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 08 2023
STATUS
approved