login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367178
Triangle read by rows. T(n, k) = binomial(n, k)^2 * CatalanNumber(k).
0
1, 1, 1, 1, 4, 2, 1, 9, 18, 5, 1, 16, 72, 80, 14, 1, 25, 200, 500, 350, 42, 1, 36, 450, 2000, 3150, 1512, 132, 1, 49, 882, 6125, 17150, 18522, 6468, 429, 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430, 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862
OFFSET
0,5
FORMULA
T(n, k) = binomial(n, k)^2 * binomial(2*k, k) / (k + 1).
T(n, k) = [x^n] hypergeom([1/2, -n, -n], [1, 2], 4*x).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 2;
[3] 1, 9, 18, 5;
[4] 1, 16, 72, 80, 14;
[5] 1, 25, 200, 500, 350, 42;
[6] 1, 36, 450, 2000, 3150, 1512, 132;
[7] 1, 49, 882, 6125, 17150, 18522, 6468, 429;
[8] 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430;
[9] 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862;
MAPLE
T := (n, k) -> binomial(n, k)^2 * binomial(2*k, k) / (k + 1):
seq(seq(T(n, k), k = 0..n), n = 0..9);
CROSSREFS
Cf. A086618 (row sums), A186415 (central column), A000108 (main diagonal).
Sequence in context: A211957 A338397 A063983 * A259985 A144084 A021010
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 07 2023
STATUS
approved