

A196026


Positive integers a for which there is a (5/2)Pythagorean triple (a,b,c) satisfying a<=b.


10



5, 6, 7, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 22, 23, 24, 25, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 32, 33, 34, 34, 35, 35, 35, 36, 36, 37, 38, 38, 38, 39, 40, 41, 42, 42, 42, 43, 44, 44, 45, 45, 46, 46, 47, 48, 48, 48, 49
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A195770 for definitions of kPythagorean triple, primitive kPythagorean triple, and lists of related sequences.


LINKS

Table of n, a(n) for n=1..68.


MATHEMATICA

z8 = 800; z9 = 150; z7 = 100;
k = 5/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
t[a_] := Table[d[a, b], {b, a, z8}]
u[n_] := Delete[t[n], Position[t[n], 0]]
Table[u[n], {n, 1, 15}]
t = Table[u[n], {n, 1, z8}];
Flatten[Position[t, {}]]
u = Flatten[Delete[t, Position[t, {}]]];
x[n_] := u[[3 n  2]];
Table[x[n], {n, 1, z7}] (* A196026 *)
y[n_] := u[[3 n  1]];
Table[y[n], {n, 1, z7}] (* A196027 *)
z[n_] := u[[3 n]];
Table[z[n], {n, 1, z7}] (* A196028 *)
x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
f = Table[x1[n], {n, 1, z9}];
x2 = Delete[f, Position[f, 0]] (* A196029 *)
g = Table[y1[n], {n, 1, z9}];
y2 = Delete[g, Position[g, 0]] (* A196030 *)
h = Table[z1[n], {n, 1, z9}];
z2 = Delete[h, Position[h, 0]] (* A196031 *)


CROSSREFS

Cf. A195770, A196027, A106028, A196029.
Sequence in context: A081407 A268857 A205857 * A191850 A066263 A178096
Adjacent sequences: A196023 A196024 A196025 * A196027 A196028 A196029


KEYWORD

nonn


AUTHOR

Clark Kimberling, Sep 26 2011


STATUS

approved



