login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Another 3-way generalization of series-parallel networks with n labeled edges.
7

%I #46 May 24 2017 08:08:47

%S 0,1,3,21,243,3933,81819,2080053,62490339,2166106509,85092601707,

%T 3735939709989,181287330220467,9634718677393917,556569415611455931,

%U 34723276781195740437,2326773811332029313411,166666995789875216053101,12708546598923724476443403

%N Another 3-way generalization of series-parallel networks with n labeled edges.

%H Alois P. Heinz, <a href="/A058562/b058562.txt">Table of n, a(n) for n = 0..360</a>

%H O. Bodini, A. Genitrini, F. Peschanski and N. Rolin, <a href="http://dx.doi.org/10.1007/978-3-319-14974-5_21">Associativity for binary parallel processes</a>, CALDAM 2015; [<a href="http://caldam.cse.iitk.ac.in/download.php?file=presentations/day2/session7/1-bogerope.pdf">Slides</a>]

%F E.g.f.: -3/2*LambertW(-2/3*exp(-2/3+1/3*x))-1. - _Vladeta Jovovic_, Jun 25 2007

%F E.g.f.: A(x) = Series_Reversion[ 3*log(1+x) - 2*x ]. [_Paul D. Hanna_, Aug 03 2008]

%F Let f(x) = (1+x)/(1-2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 0. - _Peter Bala_, Sep 05 2011

%F log(1 + A(x)) = x + 2*x^2/2! + 14*x^3/3! + 162*x^4/4! + ... is the e.g.f. for A201465. - _Peter Bala_, Jul 12 2012

%F a(n) = sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, (3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!)))). [_Vladimir Kruchinin_, Sep 26 2012]

%F G.f.: x/Q(0), where Q(k)= 1 - (k+1)*x - 2*x*(k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 01 2013

%F a(n) ~ sqrt(3) * n^(n-1) / (2*exp(n) * (log(27/8)-1)^(n-1/2)). - _Vaclav Kotesovec_, Oct 05 2013

%F a(n) = a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1. - _Peter Luschny_, May 24 2017

%p spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)}, labeled ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058562, S=A058575

%p # Alternatively:

%p A058562_list := proc(len) local A, n; A[0] := 0; A[1] := 1; for n from 2 to len do

%p A[n] := A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:

%p convert(A,list) end: A058562_list(18); # _Peter Luschny_, May 24 2017

%t a[n_] := Sum[(n+k-1)!*Sum[1/(k-j)!*Sum[(3^(j-l)*(2)^l*(-1)^(l+j)* StirlingS1[n-l+j-1, j-l])/(l!*(n-l+j-1)!), {l, 0, j}], {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Feb 26 2013, after _Vladimir Kruchinin_ *)

%o (PARI) {a(n)=if(n<1,0,n!*polcoeff(serreverse(3*log(1+x+x*O(x^n))-2*x),n))} \\ _Paul D. Hanna_, Aug 03 2008

%o (Maxima) a(n):=sum((n+k-1)!*sum(1/(k-j)!*sum((3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!),l,0,j),j,0,k),k,0,n-1); \\ _Vladimir Kruchinin_, Sep 26 2012

%Y Cf. A058540, A058371, A058575, A201465.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Dec 26 2000