login
A052786
Expansion of e.g.f.: -x^3*(log(1-x))^3.
1
0, 0, 0, 0, 0, 0, 720, 7560, 70560, 680400, 7015680, 78004080, 935542080, 12074119200, 167122859904, 2472036446880, 38940240568320, 651087633530880, 11519998092877824, 215088381671892480, 4226801728115404800, 87218325048627763200, 1885639117481531596800
OFFSET
0,7
COMMENTS
Original name: a simple grammar.
LINKS
FORMULA
E.g.f.: x^3*log(-1/(-1+x))^3.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (16*n^4+135*n+162-81*n^2-42*n^3-n^6+3*n^5)*a(n) + (-228+81*n^2+3*n^5+104*n-38*n^3-6*n^4)*a(n+1) + (36+6*n^3-3*n^4+21*n^2-60*n)*a(n+2) + (-3*n^2+n^3+2*n)*a(n+3)}.
a(n) = n*A052765(n-1) = 3!*n*(n-1)*(n-2)*abs(Stirling1(n-3,3)) for n >= 3. - Andrew Howroyd, Aug 08 2020
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(Z, Z, Z, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) a(n)={if(n>=3, 3!*n*(n-1)*(n-2)*abs(stirling(n-3, 3, 1)), 0)} \\ Andrew Howroyd, Aug 08 2020
CROSSREFS
Sequence in context: A029574 A119540 A052784 * A187192 A052792 A052790
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Named changed and terms a(20) and beyond from Andrew Howroyd, Aug 08 2020
STATUS
approved